
Fitzgerald, Laszewski, Swany and Vanderbilt
May 2001

Information Services
Request for Comments: GWD-GIS-011-6D1

Obsoletes: GWD-GIS-001
Category: informational

GOS: A Data Definition Language for Grid Information Services
Version 2.0

1 Scope

The Grid Object Specification (GOS) language is a data definition language (DDL) [1] for Grid Information Services
(GIS). The intent of this language is to specify the definition of object classes. These object classes are used to specify
the contents of entities that pertain to the Grid and grid-based applications. The GOS allows for a precise definition of
such entities so that information sharing is encouraged amongst users, applications, and services.

The GOS format builds on the syntax developed as part of the Globus Metacomputing Directory Service (MDS)
project [2, 7, 6] and has its roots in LDAP terminology [11, 9, 8]. The format, however, has evolved into a generic form.
The generic form allows for the construction of automated translators that can generate other implementation specific
forms, e.g., LDAP rfc2256 syntax and SQL syntax. We do not define either a data manipulation language (DML) [1] nor
a data model [1].

2 Introduction

The GOS allows one to specify entities used within the Grid via object-class and attribute definitions. An object class is
simply a set of attributes that are (typically) related, and an attribute is single datum that is comprised of a name and a
value of a given type. The syntax also provides constructs to include additional relevant information.

The additional information is necessary (a) to better understand the intent and purpose of the object class and (b)
to simplify the maintenance of a large number of definitions in a heterogeneous fashion amongst many object-class
designers. This additional information contains, for example, a description and an Object IDentifier (OID) field. An OID
is an unique identifier assigned to each unique definition of an object class and and attribute [10].

Within the GOS, we distinguish three types of object classes: abstract, structural, and auxiliary. These object classes
enable the definition of an entity to be defined easily and allows for the definition to be extended at a later time. In
general, every entity contains an abstract class (e.g., “GridTop”), at least one structural object class, and zero or more
auxiliary object classes. Each object class definition defines a set of attributes or fields associated with an entity of the
corresponding type.

Attributes are defined in one of two ways. First, they can be defined as an alias of an existing attribute. These attributes
are defined as part of an object class definition. Second, they can be defined within a separate syntactic construct. The
definition of attributes does not include physical representation. Such representation is implementation specific, as such
are defined elsewhere.

3 Introductory Example

We begin with a simple example intended to provide an intuitive overview of the GOS format while including most
features of the format. In this example, we define an object class that represents a compute resource, known as GridCom-
puteResource. Note that the example in this document does not necessarily represent a complete nor a proper definition
of a compute resource entity.

Each object class definition contains a number of clauses. Each of these clauses is introduced by a keyword. The
GridComputeResource’s definition includes six clauses: OID, DESCRIPTION, STRUCTURAL, KEY, MUST CON-
TAIN, and MAY CONTAIN. (By convention we use uppercase for keywords that introduce a clause within the GOS.)

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 2
May 2001

GridComputeResource OBJECT CLASS
OID 1.3.6.1.4.1.6757.2.2.3.22
DESCRIPTION "A computational resource such as a computer"
STRUCTURAL
KEY hostname :: single, cis;
MUST CONTAIN {

canonicalSystemName :: single, cis;
manufacturer :: single, cis;
model :: single, cis;
serialNumber :: single, numeric;

}
MAY CONTAIN {

diskDrive :: multiple, ces;
}

Figure 1: Example of a structural object class

OID

Each object-class definition is assigned an object identifier, which is called an OID [10]. An object class definition should
not be changed without having a new OID assigned.1 This OID number uniquely identifies a particular definition. We
believe that these OID numbers should be assigned by the GridForum to object-class and attributes definitions, which
have been sanctioned.

DESCRIPTION

Each object class contains a description clause. This clause provides for additional documentation which typically
includes a concise explanation or a statement of purpose of the object class.

STRUCTURAL

Recall that there are three types of object classes: abstract, structural, and auxiliary. The GridComputeResource is a
structural object class. Each entity that is defined must contain one structural object class. The entity’s definition can be
extended by the inclusion of either abstract object classes, auxiliary object classes, or both.

KEY

Each entity is comprised of a number of attributes. One or more of these attributes can be used to uniquely identify
an entity. In most cases a single attribute serves this role. In the GridComputeResource, the value of the “hostname”
attribute uniquely identifies an entity. Additional information about the attribute “hostname” is provided after the “::”
symbol. In this example, we see that hostname may be used as an attribute at most once and it is a case-insensitive string,
or “cis.”

Within LDAP, which follows the hierarchical data model, the key is also known as the Relative Distinguished Name
(RDN). The RDN coupled with the an entity’s position in the DIT (Directory Information Tree) provides unique “name”
of the entity. Within the relational model the key is known as the primary key or candidate key.2 The primary key,
coupled with the object class (or the table) name, uniquely names the entity.

1Here we have assumed that the GridForum has assigned the OID 1.3.6.1.4.1.6757.2.2.3.22 to the GridComputeResource object class; The number
1.3.6.1.4.1.6757 has been assigned to the GridForum by IANA[5] for the purpose defining unique OID numbers.

2There may exist several candidate keys for an entity of which only one is deemed the primary key.

2

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 3
May 2001

MUST CONTAIN

In addition to the attribute(s) associated with the key, an entity may contain a number of additional attributes. The MUST-
CONTAIN clause introduces the set of attributes that are required in each and every entity. In the example, we have
included four such attributes. The “serialNumber” is of type “numeric,” the others are of type case-insensitive string.
Each of these attributes my appear only once in an entity. This is denoted by keyword “single.”

MAY CONTAIN

It is also possible to include optional attributes with each entity. These attributes are defined via the MAY-CONTAIN
clause. In this example we see that that attribute “diskDrive” may be associated with a particular GridComputeResource.
Since a computer may contain several disk drives, we would like to define an entity that contains any number of diskDrive
attributes. The “multiple” keyword is used to denote that the corresponding attribute can be used zero or more times.

Example Instance of a GridComputeResource

An entity of type GridComputeResource can be represented in many ways. Here we provide an example in LDIF
format[3], which is comprised of a number of attribute-value pairs.

dn: hostname=burns.csun.edu, o=Grid
objectclass: GridComputeResource
hostname: burns.csun.edu
canonicalSystemName: mips sgi irix 6.5
manufacturer: SGI
model: O2000
serialNumber: 82164405
diskDrives: /dev/root
diskDrives: /dev/usr
diskDrives: /dev/dsk/dks0d4s

To distinguish this entity from other entities, we have given it a unique textual identifier, which we call a distinguished
name (or a DN). We have given this entity the name “hostname=burns.csun.edu, o=Grid.” This name is provided as the
first line of the entity and is prepended with attribute name “dn”. The entity also has an additional attribute, objectclass,
that is not defined via the GridComputeResource specification. This attribute defines the type of object class of the entity.

Auxiliary Object Classes

Auxiliary object classes are very important. Modifying the definition of an existing object class after-the-fact can be
broadly disruptive. Auxiliary object classes provide a mechanism to extended the definition of entities that are used
within the grid — without the need to modify all entities that share the same structural object class. This is similar in the
ways in which subclass declarations within object-oriented languages can share the definition of a superclass.

Auxiliary object classes can also be helpful in the initial design phase of the types of entities. Attributes that are
related can be grouped together. For example, we could define memory characteristics of a computer within a separate
auxiliary class. Attributes can include: physical memory size, virtual memory size, available memory, access time, page
size, and total swap space. Grouping these attributes together into a single object class is natural since they are related.

Alternatively, one could have associated these attributes with the original definition of the GridComputeResource
object class. This makes the definition of this object class more complicated and less clear. The use of an auxiliary object
class helps to keep the definition of structural object classes and other auxiliary object classes quite small and concise.

Consider the existing definition of the GridComputeResource object class. If we want to associate geographical
information with each compute resource, we can use an auxiliary object class to extend the GridComputeResouce object
class. Notice that such geographical information is not restricted to just compute resources, but can be used by many
other types of entities. We can define an auxiliary object class that contains geographical information, and then associate
this object class with many entities.

3

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 4
May 2001

GridLocation OBJECT CLASS
OID 1.3.6.1.4.1.6757.2.2.3.23
DESCRIPTION "This object class defines a set of"

" attributes to define the geographical"
" location of an entity"

AUXILIARY
MUST CONTAIN {

isStationary :: single, Boolean;
}
MAY CONTAIN {

locationName :: multiple, cis;
latitude :: single, float;
longitude :: single, float;
altitude :: single, float;

}

Figure 2: Example of an auxiliary object class

Notice that the format of this object class definition is similar to the definition of a GridComputeResource. The two
major differences are the replacement of the STRUCTURAL keyword by the AUXILIARY keyword, and the removal of
the KEY clause.

The AUXILIARY keyword may be followed by the name of a structural object class. This additional field restricts
which structural object classes can associated with the current auxiliary object class. For example, this is useful for an
auxiliary class that defines memory characteristics. We can indicate that the auxiliary class extends the definition of a
compute resource, i.e., the object class GridComputeResource.

Without the additional field, no restriction is placed on the use of the auxiliary object class. In the case of the
GridLocation, we have not placed any restriction. The GridLocation can be associated with any number of other structural
classes.

An entity that is defined both by the GridComputeResource and GridLocation can be represented via LDIF as shown
in Figure 3:

dn: hostname=burns.csun.edu, o=Grid
objectclass: GridComputeResource
objectclass: GridLocation
hostname: burns.csun.edu
canonicalSystemName: mips sgi irix 6.5
manufacturer: SGI
model: O2000
serialNumber: 82164405
diskDrives: /dev/root
diskDrives: /dev/usr
diskDrives: /dev/dsk/dks0d4s
isStationary: True
longitude: 135
latitude: 34

Figure 3: LDIF represention of an entity of type GridComputeResource and GridLocation

4

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 5
May 2001

4 Grammar

The grammar for the GOS is presented in this section via a set of productions represented in Extended Backus Naur Form
(EBNF). We assume that lexical analysis is first performed on the input stream, which yields a stream of terminals. The
terminals are grouped into three classes: keywords, delimiters, and tokens. Additionally, whitespaces and comments are
consumed by the lexical analysis phase. Comments are delimited by the sharp (#) character and a newline.

4.1 Keywords

All keywords are case insensitive. By convention, however, we typically use uppercase letters for keywords that introduce
clauses and lowercase letters otherwise. Within this document, we have place keywords in bold font to aid readability.
The set of keywords include:

ABSTRACT ALIAS AUXILIARY CLASS
CHILD CONTAIN DERIVED DESCRIPTION
FROM INHERITS KEY MAY
multiple MUST OBJECT OF
OID single STRUCTURAL

4.2 Delimiters

A number of delimiters or punctuation characters are defined to aid in the readability and to simplify parsing. These
delimiters include:

+ , :: ;
�

" { }

4.3 Tokens

All other terminals are defined as one of three tokens: �������	��
��� , ���	������
������������ , and �
�!"���#� . These tokens are
defined by the following regular expressions:

Token Regular Expression Example
�$�����	�%
�&�

(\’[ˆ\’\n]*\’) | (\"[ˆ\"\n]*\") ”This is a string”
�'�	���(��
����)�*�(�+�

([0-9]+\.)*[0-9]+ 125.3.4.5
�,
�!"�-�(�

[a-zA-Z][-a-zA-Z0-9]* GridComputeResource

4.4 Productions

A single GOS file may contain zero or more attribute definitions followed by one or more object class definitions

<gos> ::= (<attribute-def>)* (<class-def>)+

4.4.1 Attribute Definitions

The object class definitions provide a way to define new attributes. These attributes are essentially aliased to other pre-
defined attributes. This is convenient because the definition is close to its use, and reduces the complexity of defining
new attribute types. For example in Figure 1, we define an new attribute “diskDrive” that is of the same type as a “ces,”
or a case exact string.

The “ces” attribute is an example of a predefined attribute. Currently, the predefined set of attributes are taken from
LDAP attributes. For a full list of types defined for LDAP refer to RFC1778[4]. Examples of predefined attributes
include:

binary bitstring Boolean
case exact string (ces) case insensitive string (cis) objectclass
numeric

5

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 6
May 2001

A user, however, might want to define a new attribute independent of any object-class definition. This can be accom-
plished by defining a new attribute based upon an existing attribute. This new attribute can be either an alias of or derived
from the original attribute.

Within the GOS, there are two possible productions that can be used to define a new attribute:

<attribute-def> ::= <name> ATTRIBUTE
DESCRIPTION <string> +
ALIAS OF <name>

| <name> ATTRIBUTE
OID <oid-number>
DESCRIPTION <string> +
(DERIVED FROM <name>)?

The first production defines a new attribute as an alias. Within this production, there is no OID clause. An attribute that
is an alias for another attribute is not assigned a new OID; it simply uses the OID assigned to the original attribute.3

The second production defines a new attribute that has either a new semantic meaning or an unique physical repre-
sentation. In either case, an unique OID must be assigned to this attribute. The OID is assigned to the attribute via the
OID clause.

If the attribute has the same physical representation of an existing attribute, the DERIVED-FROM clause is used to
indicate another attribute that shares the same physical representation – but has a different semantic meaning. If, however,
the clause is omitted, the attribute has a unique physical representation. We do not provide a mechanism to define the
physical representation, since it is implementation specific.

I find this section confusing. The things in the table above, like “ces”, don’t define attributes, they define attribute
type – type specifiers which are used in attribute-specs which describe attributes. So I suggest changing the wording to
use “attribute type” (or maybe “syntax”) instead of “attribute”.

However there may be instances where “attribute” really is what’s meant. In particular, are the first couple of
paragraphs of this section talking about attributes or attribute types? What about the footnote? And is the grammar
above for assigning OIDs to attributes or to attribute types? (If the latter, does GOS needs a facility for assigning OIDs
to attribute names?)

On a related topic, is it legal for one OBJECT CLASS to have an attribute-spec of “serialNumber :: single,numeric”
while another has “serialNumber :: single,cis”? If not, where is this spelled out? – pv

4.4.2 Attribute Lists

Each entity contains a set of of attributes. Within the GOS the set of attributes associated with an object class is defined
via the �'!"�����	� � ��� ���

� � ����� production. The production for an �'!"�����(� � ��� ���
� � ����� is:

<attribute-list> ::= (<attribute-spec> ;)+
<attribute-spec> ::= <name> "::" <opt-modifier> <name>
<opt-modifier> ::= ((single | multiple) ",")?

Each attribute contains its type and an optional modifier. The attribute type must be one of the predefined attributes.
The optional modifier indicates whether or not the attribute can be used more than once within an entity. The “single”
modifier indicates that the attribute can only be used once within an entity, whereas the “multiple” modifier indicates that
the attribute can be used any number of times within an entity. If the modifier is not present, the attribute can be used
only once within an entity.

3Attributes that are defined as part of an object class are considered aliases, and the appropriate ���������
	����������������� is implied.

6

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 7
May 2001

4.4.3 Inheritance

Object class definitions may contain an inheritance specification of the form

<inheritance-spec> ::= INHERITS FROM <name>
| INHERITS FROM { <name-list> }

<name-list> ::= <name> ("," <name>)*

When object class B inherits from class A, then any instance of B has all the properties attributed to it by both A and
B. In particular, any instance of B must have all the required attributes of both A and B and may have optional attributes
from both A and B.

The terms “superclass” and “subclass” may be used to describe the inheritance relation: if object class B inherits
from class A then A is a superclass of B and B is a subclass of A.

If an object class defintion for B has more than one name in the INHERITS FROM clause, then B has all the named
classes as superclasses and instances of B must have all the properties attributed to it by B and all its superclasses.

In general, if a superclass has a particular attribute specification, the subclass should not have a specification for the
same attribute. If it does, there are some rules:

� If the superclass has the attribute in its MUST CONTAIN clause, so should the subclass. (If the superclass specifies
MAY CONTAIN clause, the subclass can “promote” it to MUST CONTAIN (or KEY).)

� If the superclass specifies the attribute as single, the subclass must do the same. (If the superclass specifes multiple,
the subclass may specify single.)

� The type of an attribute in a subclass must be the same as in the superclass.

Questions: Should we have both INHERITS FROM alternatives? The second includes the first but the first is conve-
nient for the common case of one superclass.

For CHILD OF, name-list is defined to be of the semicolon-terminated style instead of comma-separated as here.
These are both enclosed in brackets. The KEY clause uses ’+’ to separate with a terminating colon and no brackets. I
suggest making INHERITS FROM and CHILD OF use the same syntax, preferably (IMHO) comma separated. Opinions?

KEY could use the same syntax as MUST/MAY CONTAIN, possibly with a special case syntax for when there’s exactly
one key attribute. Is it intentional that they’re different? Other thoughts? – pv

4.4.4 Object Class Definitions

An object class provides a set of constraints on entities. In particular, it specifies which attributes must appear or may
appear in an entity. There are three types of object classes: abstract, structural, and auxiliary. Although one set of
grammar rules can be used to describe all three object class types, we have broken them down into three separate sets of
production rules, for simplicity.

<class-def> ::= <abstract-def>
| <structural-def>
| <auxiliary-def>

The type of an entity consists of a list of class names. A type must have at least one structural class and any number
of auxiliary classes, plus their superclasses. An abstract class can be part of a type only if some structural class inheriting
from it is also part of the type. An entity “matches” or “is an instance of” a type if and only if the entity has all the
required attributes specified by any of the classes and each of the entity’s attributes is specified by at least one of its
object classes.

7

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 8
May 2001

Should there be the requirement that there’s at most one most-derived structural class? In other words, if there’s
more than one structural class, they form a linear chain under inheritance. This makes it easier for code generators to
come up with a “proxy” object for each entry. – pv

Abstract Object Class

An abstract class is used to define a base set of attributes that can be incorporated into other classes by inheritance.
Abstract classes have no direct instances in the sense that entries can implement an abstract class only if they implement
some structural class inheriting from it.

<abstract-def> ::= <name> OBJECT CLASS
OID <oid-number>
DESCRIPTION <string>+
ABSTRACT
(<inheritance-spec>)?
(MUST CONTAIN "{" <attribute-list> "}")?
(MAY CONTAIN "{" <attribute-list> "}")?

Structural Object Class

A structural class is used to define the basic structure of an entity.

<structural-def> ::= <name> OBJECT CLASS
OID <oid-number>
DESCRIPTION <string>+
STRUCTURAL
(<inheritance-spec>)?
(KEY <key-list>)?
(CHILD OF "{" <name-list> "}")?
(MUST CONTAIN "{" <attribute-list> "}")?
(MAY CONTAIN "{" <attribute-list> "}")?

An entity must be uniquely identified via a subset of attributes that are part of its definition. The collection of attributes
that are used to uniquely identify an entity are known as its primary key. The KEY clause is used to specify the primary
key. If this clause is not provided, we assume that there is no uniform use of a single primary key.

A structural object object may also define a CHILD-OF clause. This clause is helpful where an entity of this object
class is named via the composition of a path, such as is done within a hierarchical database like LDAP. It defines the
appropriate locations in which an entity can appear within the hierarchy. The positions are specified by the object-class
name associated with an entity. This clause has been included primarily for documentation purposes.

The productions for ���#�����
� � ����� and �,
�!"�����

� � ����� are as follows:

<key-list> ::= <attribute-spec> (’+’ <attribute-spec>)* ’;’
<name-list> ::= <name> (’;’ <name>)* ’;’

Auxiliary Object Class

An auxiliary object class is used to extend the type of an entity to allow for additional attributes. In structure, an aux-
iliary object class is just like an abstract object class, except for AUXILIARY instead of ABSTRACT. But AUXILIARY
classes can be freely mixed in to an entity’s type, unlike abstract classes.

<auxiliary-def> ::= <name> OBJECT CLASS
OID <oid-number>
DESCRIPTION <string>+

8

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 9
May 2001

AUXILIARY (<name>)?
(<inheritance-spec>)?
(MUST CONTAIN "{" <attribute-list> "}")?
(MAY CONTAIN "{" <attribute-list> "}")?

The AUXILIARY clause has an optional argument. This argument places a restriction on which structural object classes
are associated with this auxiliary object class. Without the additional field, no restriction is placed on the use of the
auxiliary class.

Shouldn’t AUXILIARY take a list of names? Do we still want it? Much of the same functionality can be accomplished
by defining a subclass of a structural class with an INHERITS FROM of the AUXILIARY class. And its use prohibits
to-be-defined classes from using it, which seems somewhat counter-productive. Is there a compelling example of its
usefulness? – pv.

5 Authors’ Addresses
Steve Fitzgerald
Department of Computer Science
California State University, Northridge
18111 Nordhoff Street
Nothridge, CA 91330-8281 phone: (818) 677-3314
fax: (818) 677-2140
e-mail: Steven.Fitzgerald@ecs.csun.edu

Gregor von Laszewski
Mathematics and Computer Science Division
9700 South Cass Avenue
Argonne National Laboratory
Argonne, IL 60439, U.S.A.
phone: (630) 252 0472
fax: (630) 252 5986
e-mail: gregor@mcs.anl.gov

Martin Swany
Department of Computer Science
University of Tennessee
1122 Volunteer Blvd
Knoxville, TN 37996-3450
phone: (865) 974-6758
fax: (865) 974-4044
e-mail: swany@cs.utk.edu

Peter Vanderbilt
NASA Ames Research Center
M/S T27A-2
Moffett Field, CA 94035-1000
phone: (650) 604-0170
e-mail: pv@nas.nasa.gov

9

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 10
May 2001

6 Acknowledgement

We like to thank the GIS working group for their many helpful comments and contributions. This work was supported
in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; by the Defense Advanced
Research Projects Agency under contract N66001-96-C-8523; by the National Science Foundation; and by the NASA
Information Power Grid program.

7 Copyright

Copyright (C) Grid Forum 2000-2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or
otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the Grid Forum or other Internet organizations, except as needed for the purpose of
developing Internet standards, in which case the procedures for copyrights defined in the Internet Standards process must
be followed, or as required to translate it into.

Appendix

In this appendix, we present examples of the GridComputeResource structural object defined using two other DDLs:
RFC226 syntax and SQL.

Structured Query Language Format

Structured Query Language (SQL) is a fourth-generation language that contains many dialects. SQL defines both a DDL
and a DML for the relational data model. The DDL is used to define the structure of tables and relationships between
these tables.

The GOS format can be converted into this specific form. For example, the following SQL based definition could
be generated directly from the GridComputeResource. Note that a secondary table is created to ensure that data is
kept within an appropriate normal form, e.g., 3NF. This additional table, GridComputeResource-diskDrive also defines
a relationship, via a foreign key, with the GridComputeResource. This is necessary to ensure the consistency of the
database.

CREATE DOMAIN hostname CHAR(*)
CREATE DOMAIN canonicalSystemName CHAR(*)
CREATE DOMAIN manufacturer CHAR(*)
CREATE DOMAIN model CHAR(*)
CREATE DOMAIN serialNumber NUMERIC(*)

CREATE TABLE GridComputeResource
(

hostname DOMAIN(hostname),
canonicalSystemName DOMAIN(canonicalSystemName),
manufacturer DOMAIN(manufacturer),
model DOMAIN(model),
serialNumber DOMAIN(serialNumber),

PRIMARY KEY (hostname),
);

10

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 11
May 2001

CREATE TABLE GridComputeResource-diskDrive
(

hostname DOMAIN(hostname),
diskDrive DOMAIN(diskDrive),

PRIMARY KEY (hostname),
FOREIGN KEY (hostname) REFERENCES GridComputeResource

);

RFC2256 syntax

Many LDAP based directory servers utilize the RFC 2256 syntax to define both attributes and object classes. New data
definitions must be loaded into these servers prior to the storage of entities defined by these new definitions. The GOS
format can be convert into this specific form. In fact, the Globus project provides such a translator.

A possible translation of the GridComputeResource structural object class is presented below without explanation.

(1.3.6.1.4.1.6757.2.3.1 NAME ’hostname’ UP NAME
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE

)

(1.3.6.1.4.1.6757.2.3.1 NAME ’canonicalSystemName’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

)

(1.3.6.1.4.1.6757.2.3.1 NAME ’model’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

)

(1.3.6.1.4.1.6757.2.3.3 NAME ’serialNumber’
EQUALITY numericStringMatch
ORDERING numericStringOrder
SYNTAX 1.3.6.1.4.1.1466.115.121.1.36

)

(1.3.6.1.4.1.6757.2.3.2 NAME ’diskDrive’
EQUALITY caseExactMatch
SUBSTR caseExactSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26

)

(1.3.6.1.4.1.6757.2.2.3.22 NAME ’GridComputeResource’
SUP top
DESC "A computational resource such as a computer"
MUST (hostname $ canonicalSystemName $ manufacturer

model $ serialNumber)
MAY (diskDrive)

11

Fitzgerald, Laszewski, Swany and Vanderbilt
GWD-GIS-011-6D1

GIS-WG
GOSv2

Page: 12
May 2001

)

References

[1] DATE, C. J. An Introduction to Database Systems, sixth ed. Systems Programming. Addison-Wesley, 1995.

[2] GLOBUS. The Globus Object Class Definitions. http://www-isi.globus.org/mds/OCBrowser/globus object defs.html.

[3] GOOD, G. The LDAP Data Interchange Format (LDIF), June 2000. ftp://ftp.isi.edu/in-notes/rfc2849.txt.

[4] HOWES, T., KILLE, S., YEONG, W., AND ROBBINS, C. The String Representation of Standard Attribute Syntaxes,
March 1995. ftp://ftp.isi.edu/in-notes/rfc1778.txt.

[5] IANA. OID enterprise numbers. http://www.isi.edu/in-notes/iana/assignments/enterprise-numbers.

[6] VON LASZEWSKI, G., FITZGERALD, S., DIDIER, B., AND SCHUCHARDT, K. Defining Schemas for the Grid
with Gos, the Grid object specification. Grid Forum Working Group Document GIS-WG 1, Argonne National
Laboratory and Pacific Northwest Laboratory, June 2000. http://www.gridforum.org.

[7] VON LASZEWSKI, G., FITZGERALD, S., FOSTER, I., KESSELMAN, C., SMITH, W., AND TUECKE, S. A Di-
rectory Service for Configuring High-Performance Distributed Computations. In Proc. 6th IEEE Symp. on High-
Performance Distributed Computing (1997), pp. 365–375.

[8] WAHL, M. A Summary of the X.500(96) User Schema for use with LDAPv3, December 1997. ftp://ftp.isi.edu/in-
notes/rfc2256.txt.

[9] WAHL, M., COULBECK, A., HOWES, T., AND KILLE, S. Lightweight Directory Access Protocol (v3): Attribute
Syntax Definitions, December 1997. ftp://ftp.isi.edu/in-notes/rfc2252.txt.

[10] WAHL, M., COULBECK, A., HOWES, T., AND KILLE, S. Lightweight Directory Access Protocol (v3): Attribute
Syntax Definitions, December 1997.

[11] YEONG, W., HOWES, T., AND KILLE, S. X.500 Lightweight Directory Access Protocol, July 1993.
ftp://ftp.isi.edu/in-notes/rfc1487.txt.

12

